

IndraDyn S Synchronous servo motors MS2N

intelligent | powerful | flexible

Future-proof with power density, functionality and availability

More torque, higher rotational speeds, the practical single-cable connection, and an extensive option program: Rexroth's new MS2N generation of motors connects ultimate dynamics with compact dimensions and the best of energy efficiency. Offering a selection of rotors with lower and medium inertia is available for optimal mass adaptation. The MS2N motors become a data source for intelligent solutions in the Industry 4.0 environment.

The new generation of servo motors

Rexroth's MS2N range of motors was redeveloped from the ground up and, with more than 50 types of motors, covers a maximum torque of up to 360 Nm and maximum rotational speeds of up to 9,000 rpm.

A high power density is achieved through this new motor construction and optimized electromagnetic design. With a finely graduated range of torques and rotational speeds, application-oriented encoder options, and optional single-cable connection, the motors flexibly meet the diverse requirements of modern automation. Forced ventilation and water cooling open up new areas of performance.

Intelligence in the system

In the new MS2N product line, intelligence progresses all the way up to the motor by storing the individual readings of every single motor as well as the saturation and temperature data into the motor data memory. IndraDrive drive controllers process these values in real time, increasing the torque precision significantly and reducing the tolerance range during operation to a fraction of the values that had been standard up to now. Thus the servo motor can be used as a reliable sensor and as a data source. In this way, applications within the Industry 4.0 environment can be realized cost-effectively and without additional components.

Reliability with completely digital engineering

A new dynamic temperature model in the IndraDrive drive controller device ensures reliable operation without limiting performance. The same temperature model is loaded onto the IndraSize design tool. In this way, mechanical engineers can design drives to the limit and, in doing so, can trust that these operation points are reached in real process.

More than 50 motor types in 6 sizes with up to 5 lengths and 3 cooling types

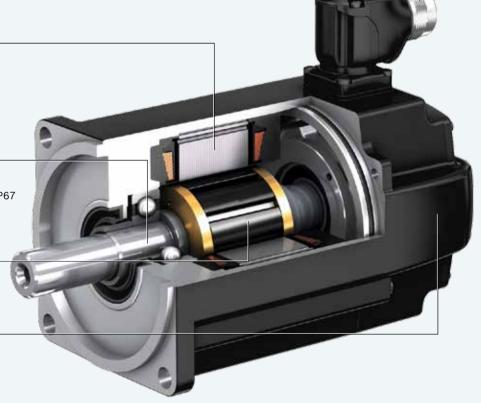
Single-cable connection

- ► Cable length of up to 75 m without additional components
- ► Plug with quick-lock
- ► Optional dual-cable connection

Powerful

- ► Compact motors
- ► High torque density
- ► Broader speed range
- ► High energy efficiency
- Optional forced ventilation and water cooling

Flexible configuration

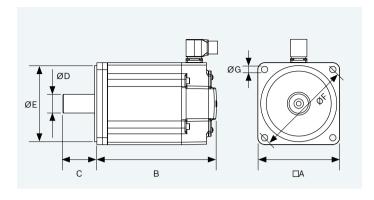

- ► Smooth shaft, keyway, shaft seal
- ▶ Degree of protection IP64, IP65 or IP67
- ► Energy-saving holding brake
- ► Increased flange accuracy
- ► Many additional options

Two motor designs

- ► Low rotor inertia for all sizes
- ► Medium rotor inertia beginning with MS2N06

Encoder types

- ► Four performance levels
- ► Singleturn/Multiturn
- ► Encoder performance B, C, D with functional safety SIL2 PLd
- ► Motor data memory



Technical Data

				Torque [Nm]					Current [A]			Speed [min ⁻¹]	Moment o [kgn
Тур	•	M _{0 60K}	M _{0 100K}	M _{0 Fan}	M _{0 Water}	M_{Max}	I _{0 60K}	I _{0 100K}	I _{0 Fan}	I _{0 Water}	I _{Max}	n _{Max}	without brake
03	MS2N03-B0BY	0.73	0.90			3.75	1.31	1.61			7.25	9000	0.000023
	MS2N03-D0BY	1.15	1.45	-		7.40	2.07	2.60	-	-	14.5	9000	0.000037
04	MS2N04-B0BN	1.75	2.15		-	6.4	1.11	1.36			4.9	6000	0.00007
	MS2N04-B0BT	1.75	2.15			6.4	2.20	2.70			9.8	6000	0.00007
	MS2N04-C0BN	- 2.80	3.50	-		13.0	1.78	2.24	_		9.7	6000	- 0.00011
	MS2N04-C0BT						3.11	3.90	_		17.3	6000	
	MS2N04-D0BH MS2N04-D0BQ	3.85	3.85 4.65				1.61 2.86	1.96 3.48	_		9.7 17.3	4000 6000	0.00016
05	MS2N05-B0BN						2.86	2.75			8.4	6000	
05	MS2N05-B0BN	3.75	4.45			11.5	4.55	5.45		_	16.8	6000	- 0.00017
	MS2N05-C0BN			-			3.53	4.16	-		15.1	6000	
	MS2N05-C0BT	6.10	7.15			22.6	7.10	8.35	-		30.2	6000	0.00029
	MS2N05-D0BH	7.00	0.05			04.0	3.05	3.63	-		15.2	4000	0.00040
	MS2N05-D0BR	7.90	9.35			34.0	6.05	7.20			30.3	6000	0.00040
06	MS2N06-B1BN	3.25	3.6			10.2	2.22	2.47			7.8	6000	0.00048
	MS2N06-C0BN	6.0	7.1			17.3	3.75	4.50			12.8	6000	0.00039
	MS2N06-C0BT						7.50	9.00	_		25.5	6000	
	MS2N06-D1BN	9.0	11.1	-		41.8	5.05	6.25		_	25.5	6000	0.00140
	MS2N06-D0BN	9.7	11.9			34.8	6.10	7.55	_		25.4	6000	0.00065
	MS2N06-D0BR MS2N06-E0BH				-		7.85 5.4	9.75 6.80	-		32.7 25.4	6000 4000	
	MS2N06-E0BR	13.0	16.3			53.4	10.9	13.7	-		50.8	6000	0.00089
07	MS2N07-B1BN	6.7	7.8			22.8	3.8	4.45		_	14.8	6000	0.00197
	MS2N07-C1BN						6.6	8.35	10.4	14.2	29.5	6000	
	MS2N07-C1BR	11.5	14.5	18.0	24.7	46.0	9.6	12.1	14.9	20.5	42.7	6000	0.00305
	MS2N07-C0BN	12.8	16.0	19.0	26.6	38.8	7.2	9.2	11.0	15.8	25.9	6000	0.00120
	MS2N07-C0BQ	12.0	10.0	15.0	20.0	30.0	10.1	12.9	15.4	22.3	36.4	6000	0.00120
	MS2N07-D1BH	18.9	23.8	31.0	50.5	92.5	7.8	9.9	12.9	21.1	42.7	4000	0.00529
	MS2N07-D1BN		20.0			02.0	9.9	12.5	16.3	26.7	54.1	6000	
	MS2N07-D0BH	22.0	22.0 28.2	35.5	55	79.7	8.55	11.1	14.0	23.1	36.4	4000	0.00210
	MS2N07-D0BN MS2N07-D0BR	22.0					11.6 17.1	15.0 22.3	19.9 28.2	31.0 46.3	49.5 72.7	6000	
	MS2N07-E1BH						8.8	11.4	15.3	26.6	54.1	4000	
	MS2N07-E1BN	25.8	32.2	43.5	76.5	140	14.1	17.7	23.9	42.0	85.4	6000	0.00752
	MS2N07-E0BH						10.75	14.2	18.6	32.6	51.8	4000	
	MS2N07-E0BN	29.2	38.2	49.5	83	119.5	15.1	20.0	26.2	45.7	72.7	6000	0.00300
	MS2N07-E0BQ						19.1	25.3	33.3	58.3	92.3	6000	
10	MS2N10-B1BQ	15.6	16.7	-	-	41.3	13.1	14.2	_	-	42.0	6000	0.00520
	MS2N10-C1BH	27.3	31.0	38.7	47	86.5	11.2	13.0	16.2	19.6	40.9	4000	0.00920
	MS2N10-C1BN						16.5	19.0	24.1	29.2	60.8	6000	
	MS2N10-C0BH MS2N10-C0BN	30.2	34.0	43.2	51.7	76.8	12.6 16.8	14.5 19.3	18.8 25.1	23 30.8	38.5 51.3	4000 6000	0.00480
	MS2N10-C0BN MS2N10-D1BF						13.8	19.3	22.6	30.8	60.7	3000	
	MS2N10-D1BN	47.2	56.0	78.0	98.5	174	28.6	34.3	48.5	61.9	121.5	6000	0.01710
	MS2N10-D0BH						19.1	23.1	32.4	43.7	70	4000	
	MS2N10-D0BN	51.0	60.5	82.4	107.5	155	28.2	34.1	48.0	64.7	102.5	6000	0.00810
	MS2N10-E1BF	64.0	76.0	113.0	159	266	16.8	20.1	29.2	44.2	81	3000	0.02500
	MS2N10-E1BN	04.0	70.0	113.0	108	266	34.2	41.0	61.7	88	162	6000	0.02300
	MS2N10-E0BH	67.7 82.5	119.0	162	234	25.4	31.0	46.1	64.8	102.5	4000	0.01140	
	MS2N10-E0BN						34.5	42.8	62.9	90	140	6000	
	MS2N10-F1BD	/9 5 96	96.5	145.0	209	360	15.9	19.5	27.7	42.8	81	2000 4000	0.03290
	MS2N10-F1BH 75.5 MS2N10-F0BD					31.8 15.8	38.9 19.5	58.6 28.8	85.5 43.3	162 70	2000		
	MS2N10-F0BH	85.0	103.0	148.5	214	313	32.0	39.4	58.6	87.5	140	4000	0.01470

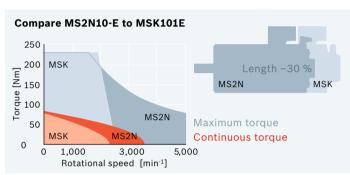
f inertia

Mass[kg]

n ²]	[mm]												Self-cooling	
	Α			В			D	С	E	F	G			
with brake	Flange	Encoder "A" length	Encoder "B/C" length	Encoder "D" length	Brake length	Forced ventilation	Shaft	Shaft length	Centering collar	Bolt circle	Mounting hole	without brake	with brake	
0.000030 0.000044	- 58	148 188	+15	-	+29	_	9	20 23	- 40	63	4.5	2.0	1.8 2.4	
0.000044	82	147 179 +15					11					2.7	3.4	
0.00016			-	+32.5	-	14	30	50	95	6.6	3.7	4.4		
0.00020		211										4.7	5.4	
0.00028		170	- +18 -	-	+30	-	19	40	95	115	9	4.0	5.1	
0.00040	98	206										5.9	7.0	
0.00051		242										7.3	8.4	
0.00059		164			+37	-	24	50	95	130	9	5.1	6.2	
0.00050		184										6.4	7.4	
0.00154 0.00079	- 116	224	+0	+18								9.0	10.5	
0.00103		264										11.5	13.0	
0.00223		176				-						9.5	11.5	
0.00331		205										12.0	14.0	
0.00146														
0.00570														
0.00251	140	263	+0	+16	+54	+121	32	58	130	165	11	17.5	20.0	
0.00793		321												
0.00341												23.0	26.0	
0.00561		194			+51							17.5	21	
0.01067		238	- +0	+0	+60	+98	38		180	215	14	24.0	29.0	
0.00627	- - 196 -							80				23.5	28.5	
0,01857		296										36.0	41.0	
0.00957												34.0	39.0	
0.02770		354										47.0	54.0	
0.01410												45.0	52.0	
0.03560		412										59.0	66.0	
0.01740												55.0	62.0	
										Cubicat	to rovisions	Dolivory data		

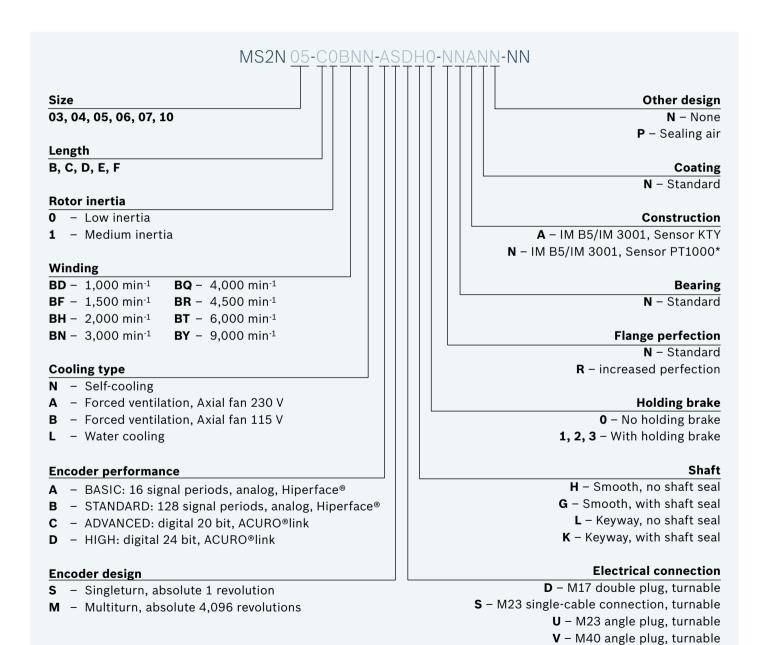
Dimensions

More torque and higher rotational speeds


Short coil heads and high-performance motors enable compact dimensions with minimal power loss. This leads to a significant improvement in energy efficiency and reduces operating costs over the long term. The available field weakening operation in conjunction with IndraDrive drive controllers extends the usable torque speed range beyond the voltage limit.

Connection technology

Whether conventional cabling with compact round connectors or a modern single-cable connection, MS2N offers the practical diversity for less installation work and space requirement. The size MS2N10 is also available with terminal box. All plugs are equipped with comfortable quick locking and can be rotated up to plug size M40.


Self-cooled, force-ventilated or water-cooled

The motors are optionally available with integrated fans or water cooling starting at size MS2N07. The nominal torque is increased significantly in the same construction size. All fan motors offer degree of protection IP65, an integrated temperature sensor with certified intrinsic safety as well as optionally 115 V or 230 V connection voltage.

Water-cooled motors offer even more increased continuous torque and highest power density, for new machine concepts with minimum space and high requirements on effective heat dissipation. The robust design of the entire motor cooling in stainless steel allows the simple and reliable integration into a wide range of cooling circuits.

Type Code

A - M58 angle plug, side A
B - M58 angle plug, side B
T - Terminal box, size 1
C - Terminal box, size 2

Available options and technical data: see product documentation
* Available from 3rd quarter 2017

The Drive & Control Company

Bosch Rexroth AG

Bgm.-Dr.-Nebel-Str. 2 97816 Lohr, Germany www.boschrexroth.com

Find your local contact person here:

www.boschrexroth.com/contact

Further information:

www.boschrexroth.com/ms2n

